Course Catalog: ├──Chapter 1 Overview of the Career of Data Analyst | ├──01. What is the financial prospect of a data analyst? [3].mp4 6.78M | ├──02. Who is suitable for data analysis_[3].mp4 12.93M | ├──03.Critical knowledge of data analysts_[3].mp4 29.04M | └──04.Main responsibilities of a data analyst_[3].mp4 20.58M ├──Chapter 2 Concepts and Ideas of Data Analysis and Data Mining | ├──Section 1 Basic Concepts | | ├──01. Data analysis and data mining definition.mp4 129.88M | | ├──02. The hierarchy of data analysis and data mining.mp4 63.28M | | ├──03. Three elements of data analysis and data mining.mp4 227.64M | | └──04. Summary of this section.mp4 41.30M | ├──Section 2 Exploratory Data Analysis | | ├──01. How to describe traffic data.mp4 204.82M | | ├──02. Principles of Visual Display.mp4 19.81M | | └──03. Summary of this section.mp4 26.52M | ├──Section 3 Prediction and Classification | | ├──01. Conceptual model and process of prediction and classification.mp4 87.00M | | ├──02. Classification and prediction: linear regression.mp4 135.32M | | ├──03. Logistic regression.mp4 223.60M | | ├──04. Decision Tree Algorithm.mp4 124.01M | | ├──05. Support Vector Machine.mp4 105.06M | | ├──06. Naive Bayes.mp4 88.14M | | └──07. Summary of this section.mp4 25.72M | └──Section 4 Clustering and Dimensionality Reduction | | ├──01. Basic concepts of clustering algorithms.mp4 100.08M | | ├──02. Hierarchical Clustering.mp4 87.79M | | ├──03. K-means clustering.mp4 74.11M | | ├──04. Dimensionality reduction model-PCA.mp4 61.44M | | └──05. Summary of this section.mp4 2.13M ├──Chapter 3 Basic Statistics and SPSS Software Application | ├──Section 1 Descriptive Statistics Description | | ├──01. The purpose of statistical analysis.mp4 39.60M | | ├──02. Key concepts of statistical analysis.mp4 17.91M | | ├──03. Four measurement scales.mp4 151.23M | | ├──04. Central tendency-mean.mp4 58.42M | | ├──05. Central tendency - median and mode.mp4 36.14M | | ├──06. Discrete Trend-Range and Variance.mp4 132.21M | | ├──07. Case operation-How to realize the trend of dispersion and concentration.mp4 137.79M | | └──08. Summary of this section.mp4 7.21M | ├──Section 2 Hypothesis Testing_Statistical Judgment | | ├──01. The essence of statistics.mp4 39.43M | | ├──02. Two major theorems of statistics.mp4 46.30M | | ├──03. Statistical judgment-sampling error and standard error.mp4 61.26M | | ├──04. Statistical Inference-t Distribution.mp4 85.49M | | ├──05. Statistical Inference-Parameter Estimation.mp4 72.08M | | ├──06. Statistical Inference-Hypothesis Testing.mp4 127.05M | | └──07. Summary of this section.mp4 20.70M | ├──Section 3 Sampling Method | | ├──01. Statistical process.mp4 8.58M | | ├──02. The concept of sampling.mp4 6.80M | | ├──03. Sampling method and non-sampling method.mp4 93.78M | | ├──04. Characteristics of sampling survey and census.mp4 39.51M | | ├──05. Non-sampling survey.mp4 67.10M | | ├──06. Three types of non-sampling surveys.mp4 236.94M | | ├──07. Handling of no-response errors.mp4 15.64M | | ├──08. Sampling process.mp4 43.71M | | ├──09. Sampling unit and sampling frame.mp4 25.95M | | ├──10. Sampling format.mp4 166.50M | | ├──11. Probability sampling-simple sampling and systematic sampling.mp4 49.71M | | ├──12. Probability sampling-pps sampling.mp4 115.68M | | ├──13. Probability Sampling-Stratified Sampling.mp4 21.97M | | ├──14. Non-probability sampling-area sampling, time sampling and telephone sampling.mp4 61.76M | | └──15. Summary.mp4 22.62M | └──Section 4 General Model | | ├──Practical questions | | ├──1. t-test.mp4 19.08M | | ├──2. t-test-case practice.mp4 181.35M | | ├──3. F test.mp4 34.93M | | ├──4. F test-case practice.mp4 93.26M | | ├──5. Correlation analysis.mp4 21.58M | | ├──6. Correlation Analysis-Case Practice.mp4 44.81M | | ├──7. Linear regression.mp4 40.77M | | ├──8- Linear Regression-Case Practice.mp4 89.32M | | └──9. Summary of this section.mp4 47.01M ├──Chapter 4 Basics of Data Preprocessing | ├──Section 1 Preparation before data analysis | | ├──1. Statistical workflow.mp4 24.80M | | ├──2. Statistical preparation.mp4 100.21M | | ├──3. Data inspection points.mp4 153.32M | | ├──4. Preparation for open questions.mp4 173.26M | | └──5. Summary of this section.mp4 11.30M | ├──Section 2 Data Cleansing | | ├──1. The concept and process of data cleaning.mp4 39.00M | | ├──2. Field selection and data quality report.mp4 100.61M | | ├──3. Main work of data cleaning.mp4 108.24M | | ├──4. Error value and abnormal value processing method.mp4 142.40M | | ├──5. Missing value processing method.mp4 233.95M | | ├──6. Processing of abnormal values and missing values.mp4 169.79M | | └──7. Summary of this section.mp4 11.46M | ├──Section 3 Data Normalization | | ├──1. Data conversion.mp4 236.81M | | ├──2. Data discretization and data expansion.mp4 153.58M | | ├──3. Data merging and splitting.mp4 210.56M | | └──4. Summary of this section.mp4 5.74M | └──Homework.txt 0.06kb ├──Chapter 5 MySQL Tutorial | ├──Section 1 Introduction to SQL | | ├──1. SQL Introduction.mp4 82.03M | | ├──2. Establish database.mp4 71.82M | | ├──3. Create data tables and constraints.mp4 101.50M | | ├──4. Insert and change.mp4 108.79M | | └──5. Summary of this section.mp4 9.74M | ├──Section 2 Basic Query Statements | | ├──1. Basic query statement.mp4 158.66M | | └──2. Summary of this section.mp4 6.65M | ├──Section 3 Cross-Query and Sub-Query | | ├──1. Aggregate functions and cross-queries: group by.mp4 119.38M | | ├──2. Subquery (in, not in) & fuzzy matching Like.mp4 144.84M | | └──3. Summary of this section.mp4 3.10M | ├──Section 4 Practice Table Query | | ├──1. Join table query.mp4 247.05M | | └──2. Summary.mp4 14.25M | └──After-class exercises | | ├──Title.txt 0.35kb | | └──Homework materials.rar 144.33kb ├──Chapter 6 Excel Analysis and Visualization | ├──Section 1 Introduction to Excel | | └──1. Introduction to Excel.mp4 55.95M | ├──Section 2 Excel Function Skills | | ├──1. Introduction to functions.mp4 84.28M | | ├──2. Search functions - vlookup and hlookup.mp4 208.29M | | ├──3. Search functions - INDEX and MATCH.mp4 45.41M | | ├──4. Statistical function.mp4 252.21M | | ├──5. Logical functions (Part 1) - if, anda and or.mp4 123.57M | | ├──6. Logical Function (Part 2).mp4 113.60M | | ├──7. Date functions and text functions.mp4 190.06M | | └──8. Summary of this section.mp4 21.51M | ├──Section 3 Excel Quick Processing Skills | | ├──1. Macro Techniques.mp4 262.60M | | ├──2. Pivot table and selective paste.mp4 184.97M | | ├──3. Format adjustment techniques.mp4 149.13M | | ├──4. Search and Positioning & Data Validity Techniques.mp4 276.50M | | ├──5. Shortcut key related skills.mp4 64.12M | | └──6. Summary of this section.mp4 24.31M | ├──Section 4 Excel Visualization Techniques | | ├──1. How to make a picture.mp4 154.00M | | ├──2. How to make a combination chart.mp4 151.30M | | ├──3. Bar chart variant.mp4 132.19M | | ├──4. How to start the data map.mp4 95.59M | | └──5. Summary of this section.mp4 7.47M | └──After-class exercises | | ├──After-class exercises.docx 412.69kb | | ├──Nezha.png 129.28kb | | ├──Homework materials (1).rar 144.33kb | | └──Homework materials.rar 144.33kb ├──Chapter 7 Advanced Learning | ├──Section 1: Selection of multivariate analysis methods | | ├──1. Unsupervised analysis and supervised analysis.mp4 31.93M | | └──2. Principles of unsupervised analysis.mp4 38.37M | ├──Section 2 Factor Analysis | | ├──1. Factor analysis usage scenarios.mp4 26.96M | | ├──2. The concept and analysis process of factors.mp4 72.83M | | ├──3. Estimation of the number of factors.mp4 65.87M | | ├──4. Rotation of factor axis.mp4 59.08M | | ├──5. Factor interpretation and factor score calculation.mp4 53.58M | | ├──6. Case practice.mp4 118.97M | | └──7. How to use factor analysis for evaluation.mp4 89.31M | ├──Section 3 Cluster Analysis | | ├──1. Cluster analysis usage scenarios.mp4 120.50M | | ├──2. Cluster analysis algorithm.mp4 79.91M | | ├──3. Non-hierarchical clustering K-means.mp4 112.92M | | ├──4. K-means case practice.mp4 223.04M | | └──5. Second-order clustering.mp4 32.96M | ├──Section 4 Correspondence Analysis | | ├──1. Purpose of Correspondence Analysis and Interpretation of Results.mp4 98.03M | | └──2. Correspondence Analysis Case Practice.mp4 128.91M | ├──Section 5 Multidimensional Scaling Analysis | | ├──1. Concept and usage scenarios.mp4 81.03M | | ├──2. Multidimensional Scaling Analysis Example.mp4 130.62M | | ├──3. Case 1: Assign seats based on student scores.mp4 54.71M | | ├──4. Case 2: Assign seats based on students' test scores.mp4 26.13M | | ├──5. Case 3: Judging competitiveness based on the similarity of mobile phones.mp4 27.91M | | └──6. The shortcomings of multidimensional scaling and alternative methods.mp4 30.85M | ├──Section 6 Time Series Analysis | | ├──1. Time series usage scenarios.mp4 6.45M | | ├──2. Two types of time series.mp4 6.39M | | ├──3. Time Series Model ARIMA.mp4 10.12M | | ├──4. Processing methods in time series.mp4 97.16M | | └──5. Case practice-forecasting of factors affecting sales of a supermarket chain.mp4 153.00M | ├──Section 7 Logistic | | ├──1. Usage scenarios and theoretical background.mp4 96.33M | | └──2. Logistic case practice-factors affecting user churn and new user prediction.mp4 288.51M | └──After-class exercises | | ├──Advanced Statistical Methods Assignment Data.xlsx 11.05kb | | └──Title.txt 0.14kb ├──Chapter 8 Classic Data Mining Algorithms | ├──Section 1 Data Mining Basics and Data Stratified Sampling | | ├──1. Familiar data mining cases in life.mp4 31.16M | | ├──2. Data preparation and data segmentation method.mp4 12.24M | | ├──3. The connection and difference between data analysis and data mining.mp4 84.83M | | ├──4. Modeler software introduction.mp4 43.96M | | └──5. How to implement data stratified sampling in Modeler.mp4 143.68M | ├──Section 2 Naive Bayes | | ├──1. Naive Bayes Principle.mp4 77.21M | | ├──2. Naive Bayes algorithm process.mp4 34.33M | | ├──3. Naive Bayesian Algorithm Example.mp4 58.45M | | ├──4. Advantages and disadvantages of the naive Bayes algorithm.mp4 114.41M | | └──5. Case Practice - Modeling Using Bayesian Networks.mp4 96.41M | ├──Section 3 Decision Tree | | ├──1. Decision tree usage scenario.mp4 3.88M | | ├──2. Decision Tree Algorithm (1)——ID3.mp4 19.40M | | ├──3. Decision Tree Algorithm (2)——C4.5.mp4 45.49M | | ├──4. Decision Tree Algorithm (3)——Regression Tree CART.mp4 50.17M | | ├──5. Decision Tree Algorithm (4)——CHAID.mp4 11.05M | | ├──6. Preventing overfitting problems.mp4 6.37M | | └──7. How to make a decision tree using Modeler.mp4 141.23M | ├──Section 4 Neural Networks | | ├──1. The composition of neural network.mp4 87.75M | | ├──2. Calculate the error function and correct the accident weight.mp4 30.30M | | ├──3. The relationship between neural networks and other analyses.mp4 17.95M | | └──4. Case Practice.mp4 28.39M | ├──Section 5 Support Vector Machine | | ├──1. Introduction to the principle of support vector machine.mp4 21.16M | | ├──2. Linearly separable and linearly inseparable.mp4 11.01M | | └──3. Case Practice.mp4 60.86M | ├──Section 6 Ensemble Algorithms and Model Evaluation | | ├──1. The purpose and method of integrated algorithm.mp4 15.20M | | ├──2. The calculation principle of Bagging and Bosting.mp4 170.23M | | ├──3. Model evaluation based on confusion matrix.mp4 40.12M | | ├──4. Draw the GAIN curve and Lift curve in Modeler.mp4 19.94M | | └──5. Learning materials expansion.mp4 27.78M | └──After-class exercises | | ├──After-class exercises.txt 0.18kb | | └──Homework materials.rar 313.64kb ├──Chapter 9 Introduction to R language and basic analysis | ├──Section 1 Basic Operations of R Language | | ├──1. Introduction to R language.mp4 124.09M | | ├──10. Discrete random variable distribution and continuous random variable distribution.mp4 274.86M | | ├──2. Basic operations of R language.mp4 146.18M | | ├──3. Introduction to data structure of R language.mp4 100.36M | | ├──4. Basic operations of vectors and matrices.mp4 281.98M | | ├──5. Data frame operation.mp4 341.38M | | ├──6. Loop control flow——for&while.mp4 108.99M | | ├──7. Conditional selection control flow——if.mp4 68.31M | | ├──8. Custom function.mp4 77.09M | | └──9. Introduction to R language functions and applications of probability distribution.mp4 206.44M | ├──Section 2 Descriptive Data Analysis in R | | ├──1. Exploratory Data Analysis - Central Tendency and Dispersion Tendency.mp4 220.06M | | ├──2. Exploratory Data Analysis - Introduction to Correlation Coefficient and Function.mp4 244.92M | | └──3. Exploratory Data Analysis - Hypothesis Testing.mp4 41.23M | ├──Section 3 R language regression algorithm | | ├──1. Introduction to basic regression algorithms and related Hahn numbers (Part 1).mp4 363.71M | | ├──2. Introduction to basic regression algorithms and related Hahn numbers (Part 2).mp4 272.55M | | ├──3. Model selection.mp4 206.08M | | └──4. Regression diagnosis.mp4 375.55M | ├──Section 4 R language classification algorithm | | ├──1. Logistic regression (Part 1).mp4 336.63M | | ├──2. Logistic regression (Part 2).mp4 431.91M | | ├──3. Decision Tree Algorithm.mp4 65.35M | | ├──4. Decision Tree Pruning.mp4 224.07M | | └──5. Random Forest.mp4 341.92M | ├──Section 5 Clustering and Dimensionality Reduction in R | | ├──1. How to implement hierarchical clustering using R.mp4 468.60M | | ├──2. How to implement Kmeans clustering method using R.mp4 99.41M | | ├──3. How to judge the quality of clustering.mp4 171.71M | | └──4. How to implement PCA dimensionality reduction using R.mp4 342.05M | └──After-class exercises | | ├──Scalper details.rar 215.68kb | | └──After-class exercises.txt 0.34kb ├──Chapter 10 Introduction to Python and Basic Analysis | ├──Section 1 Overview and Basic Operations | | ├──1. Introduction to the course and development environment.mp4 80.25M | | ├──2. Obtaining help documents & basic operations.mp4 233.16M | | ├──3. Basic operations: integers, decimals, complex numbers & lists, strings, dictionaries.mp4 120.87M | | ├──4. Custom function.mp4 119.92M | | ├──5.Implementation of Jupyte common shortcut keys and automatic completion function r.mp4 59.73M | | └──6. Summary of this section.mp4 9.41M | ├──Section 2 Numpy | | ├──1. Create an array from scratch.mp4 229.21M | | ├──2. Case practice - how to implement 99 multiplication table and slot machine.mp4 113.56M | | ├──3. Array Operations.mp4 140.86M | | ├──4. Array calculation.mp4 82.32M | | ├──5. Array broadcast.mp4 173.79M | | └──6. Comparison, Masking and Boolean Logic.mp4 113.66M | ├──Section 3 Pandas | | ├──1. Sequence and database.mp4 97.54M | | ├──10. Summary of this section.mp4 11.04M | | ├──2. Index and slice.mp4 105.59M | | ├──3. Generate new columns through index operation.mp4 44.32M | | ├──4. Reading and writing files.mp4 65.38M | | ├──5. Missing value processing.mp4 106.21M | | ├──6. Data connection.mp4 146.10M | | ├──7. Grouping and aggregation.mp4 92.35M | | ├──8. Pivot table.mp4 125.21M | | └──9. String processing.mp4 47.02M | ├──Section 4 Matplotlib and Python drawing | | ├──1. Basic drawing - line chart and scatter chart.mp4 194.77M | | ├──2. Basic drawing - histogram and pie chart.mp4 97.36M | | ├──3. Sub-figures and legends.mp4 93.86M | | ├──4. Icon settings——labels, table styles and cmap.mp4 206.07M | | ├──5. Advanced Drawing.mp4 171.06M | | └──6. Summary of this section.mp4 2.52M | ├──Section 5 Sklearn and Machine Learning Basics | | ├──1. Linear regression.mp4 109.66M | | ├──10. Support Vector Machine - Kernel Function.mp4 144.57M | | ├──11. How does the support vector machine prevent overfitting.mp4 96.33M | | ├──12. How to use Python to implement PCA dimensionality reduction algorithm.mp4 227.84M | | ├──13. How to implement Kmeans clustering using Python.mp4 82.91M | | ├──14. Summary of this section.mp4 30.38M | | ├──2. Principles, model implementation and regularization of logistic regression.mp4 222.68M | | ├──3. Evaluation of logistic regression and optimal number of iterations.mp4 204.24M | | ├──4. Implementation process of Bayesian classifier.mp4 66.52M | | ├──5. Naive Bayes Algorithm Case - Handwritten Digit Recognition.mp4 44.51M | | ├──6. Data preprocessing.mp4 307.29M | | ├──7. Decision Tree and Random Forest——Entropy and Decision Tree.mp4 86.72M | | ├──8. Comparison of decision tree and random forest algorithms.mp4 100.08M | | └──9. Parameter adjustment of random forest.mp4 222.16M | └──After-class exercises | | └──After-class exercises.txt 0.40kb ├──Chapter 11 Course Summary Chart | └──Course Summary.mp4 94.47M └──Information | ├──Course practice materials.RAR 1.69M | ├──Data analysis course that everyone can learn-summary chart.RAR 107.20kb | └──Data Analyst for Everyone - Lecture Notes (pdf).RAR 21.22M |
<<: bilibili: 2020 Brand Marketing Handbook
>>: Analysis of the competition between Kuaiying and Jianying
Bilibili , a video content community that started...
Due to the needs of the development of the urban ...
If you haven't heard of the Get APP , then yo...
Keyword report and search term report , these two...
With the continuous development of mobile Interne...
Every small event requires countless discussions,...
Dear Taobao friends, if you are still worried abo...
The rise of mobile Internet is inseparable from t...
User interaction after community operations is ve...
As a marketing dog, you must have the moment when...
Over the years of work, I have worked on many pro...
How much is the quotation for Binzhou women's...
Ding Tianyu - Technical Practice Guide, Make Mone...
How much does it cost to invest in the Haikou chi...
According to the definition of Baidu Encyclopedia...