Ma Bingshi-Python big data full stack engineering resources introduction: Course Catalog 001.hadoop-Big Data Enlightenment-First Look at HDFS.mp4 002.hadoop-HDFS theoretical basis reading and writing process.mp4 003.hadoop-HDFS cluster construction-pseudo-distributed mode 1.mp4 003.hadoop-HDFS cluster construction-pseudo-distributed mode 2.mp4 004.hadoop-HDFS cluster construction-HA mode concept 1.mp4 004.hadoop-HDFS cluster construction-HA mode concept 2.mp4 005.hadoop-HDFS cluster construction-HA mode verification.mp4 006.hadoop-HDFS permissions, enterprise-level construction, idea+maven development HDFS 1.mp4 006.hadoop-HDFS permissions, enterprise-level construction, idea+maven development of HDFS 2.mp4 007.hadoop-MapReduce principle detailed explanation, easy to get started.mp4 008.hadoop-Mapkeducen principle, Varn original 1.mp4 008.hadoop-Mapkeducen principle, Varn original 2.mp4 009.hadoop-MapReduce-Yar cluster construction, idea development MR wC program 1.mp4 009.hadoop-MapReduce-Yar cluster construction, idea development MR wC program 2.mp4 010.hadoop-MapReduce job submission method, source code-client submission source code 1.mp4 010.hadoop-MapReduce job submission method, source code-client submission source code 2.mp4 011.hadoop-MapReduce source code-MapTask-input source code detailed explanation.mp4 012.adoop-MapReduce source code-MapTask-output and ReduceTask 1.mp4 012.adoop-MapReduce source code-MapTask-output and ReduceTask 2.mp4 013.hadoop-MapReduce development-grouping to get TopN-AP refinement 1.mp4 013.hadoop-MapReduce development-grouping to get TopN-AP refinement 2.mp4 014.hadoop-MapReduce development recommendation system big data thinking mode.mp4 015 Hive architecture introduction and remote database mode installation 1.mp4 015 Hive architecture introduction and remote database mode installation 2.mp4 016 Hive Remote Metadata Service Mode Installation and Hive SOL 1.mp4 016 Hive Remote Metadata Service Mode Installation and Hive SOL 2.mp4 017.Hive erde, HiveServer2, Hive function 1.mp4 017.Hive erde, HiveServer2, Hive function 2.mp4 018.Hive parameter settings, operation mode, dynamic partitioning, bucketing 1.mp4 018.Hive parameter settings, operation mode, dynamic partitioning, bucketing 2.mp4 019.Hive view, index, and permission management 1.mp4 019.Hive view, index, and permission management 2.mp4 020.Hivetization, file type, HiveServer2 high availability 1.mp4 020.Hivetization, file type, HiveServer2 high availability 2.mp4 021.HBase Architecture Introduction, Data Model 1.mp4 021.HBase architecture introduction, data model 2.mp4 022.HBase pseudo-distributed and fully distributed installation, HBase basic commands 1.mp4 022.HBase pseudo-distributed and fully distributed installation, HBase basic commands 2.mp4 023.HBase Java API, Protocol Buffer Brief Introduction 1.mp4 023.HBase Java API, Protocol Buffer Brief Introduction 2.mp4 024.HBase and MapReduce integration, Hbase table design 1.mp4 024.HBase and MapReduce integration, Hbase table design 2.mp4 025.Hbase optimization and LSM tree 1.mp4 025.Hbase optimization and LSM tree 2.mp4 026.Hadoop Project-Requirement Introduction and Data Source Generation ProcessRequirement Introduction and Data Flow Diagram 1.mp4 026.Hadoop project-Requirement introduction and data source generation processRequirement introduction and data flow diagram 2.mp4 027.Hadoop project-Java and js data generation code explanation and flume brief introduction 1.mp4 027.Hadoop project-Java and js data generation code explanation and flume brief introduction 2.mp4 028.Hadoop project-Flume explanation and data cleaning module preparation 1.mp4 028.Hadoop project-Flume explanation and data cleaning module preparation 2.mp4 029.Hadoop project-data cleaning code analysis, hive and hbase integration, indicator analysis ideas 1.mp4 029.Hadoop project-data cleaning code analysis, hive and hbase integration, indicator analysis ideas 2.mp4 030.Hadoop project-hand-typed user-added indicator module code 1.mp4 030.Hadoop project-hand-typed user-added indicator module code 2.mp4 031.Hadoop project-MR output data to mysql output formatting class, sqo0p brief introduction 1.mp4 031.Hadoop project-MR output data to mysql output formatting class, sqo0p brief introduction 2.mp4 032.Hadoop Project-Hive SQL Analysis User Browsing In-depth Code Explanation and Script Writing 1.mp4 032.Hadoop Project-Hive SQL Analysis User Browsing In-depth Code Explanation and Script Writing 2.mp4 033.Introduction to redis and NIO principles 1.mp4 033.Introduction to redis and NIO principles 2.mp4 034.redis string type & bitmap 1.mp4 034.redis string type & bitmap 2.mp4 035. redis list, set, hash, sorted set, skiplist 2.mp4 035. redis list, set, hash, sorted set, skiplist 1.mp4 036.redis message subscription, pipeline, transaction, modules, Bloom filter, cache LRU 1.mp4 036.redis message subscription, pipeline, transaction, modules, Bloom filter, cache LRU 2.mp4 037. redis persistent RDB, fork, copyonwrite, AOF, RDB&AOF mixed use 1.mp4 037. redis persistent RDB, fork, copyonwrite, AOF, RDB&AOF mixed use 2.mp4 038. Redis cluster: master-slave replication, CAP, PAXOS, cluster sharding cluster 01.mp4 039. Redis cluster: master-slave replication, CAP, PAXOS, cluster sharding cluster 02.mp4 040.redis development: spring.data.redis, connection, serialization, high-low api.mp4 041. Zookeeper introduction, installation, shellcli usage, basic concept verification.mp4 042. Zookeeper principle knowledge, Paxos, Zab, role functions, API development basics.mp4 043.Zookeeper case: distributed configuration registration discovery, distributed lock, ractive mode programming.mp4 044.Scala language, functional programming, data set processing, iterator design pattern implementation.mp4 045.Scala language, process control, advanced functions.mp4 046. Scala language, collection container, iterator design pattern source code analysis.mp4 047. Scala language, match, case class, implicit, spark wordcount.mp4 048.spark-core, reviewing hadoop ecology, sorting out terminology, and analyzing hadoopRDD source code.mp4 049.spark-core, wordcount case source code analysis, diagram.mp4 050.spark-core, collection operation API, pvuv analysis, RDD source code analysis.mp4 051.spark-core, aggregate computing API, combineByKey, partition tuning.mp4 052.spark-core, secondary sorting, grouping TOpN, operator comprehensive application.mp4 053.spark-core, cluster framework diagram, role function introduction, official website learning, construction.mp4 054.spark-core, history service, standaloneHA, resource scheduling parameters.mp4 055.spark-core, yarn-based cluster construction, configuration, resource scheduling parameters, and optimization jars.mp4 056.spark-core-source code, RpcEnv, standaloneMaster startup analysis.mp4 057.spark-core-source code, Worker startup, sparksubmit submission, Driver startup.mp4 058.spark-core-source code, Application registration, Executor resource application.mp4 059.spark-core-source code, sparkContext, DAGScheduler, stage division.mp4 060.spark-core-source code, Taskscheduler, Executor running Task, SparkEnv.mp4 061.spark-core-source code, MemoryManager, BlockManager.mp4 062.spark-core-source code, Dependency, SortShuffleManager.mp4 063.spark-core-source code, SortShuffleWriter, memory buffer buffer.mp4 064.spark-core-source code, SortShuffleWriter, memory buffer buffer.mp4 065.spark-core-source code, UnsafeShufleWriter, Tungsten, Unsafe, off-heap.mp4 066.spark-core-source code, ShuffleReader, Tracker, Scheduler complete scheduling.mp4 067.spark-core-source code, RDD persistence, checkpoints, broadcast variables, accumulators.mp4 068.spark-core-source code, RDD persistence, checkpoints, broadcast variables, accumulators.mp4 069.spark-sql, SQL composition principle in big data.mp4 070.spark-sql, dataframe to dataset development.mp4 071.spark-sql, integrating hive's metastore to build enterprise-level data integration 1.mp4 072.spark-sql, integrating hive's metastore to build an enterprise-level data warehouse 2.mp4 073.spark-sql, complex sql, function, custom function, window over function, OLAP.mp4 074.spark-sql-source code, sql parsing, dataset to rdd execution plan.mp4 075.spark-sql-source code, antlr4 sql parsing, AST syntax tree logical to physical conversion.mp4 076.spark-sql-source code, logical plan, optimizer, physical plan, convert RDD.mp4 077.spark-streaming, streaming computing micro-batch computing principle and standalone.mp4 078.spark-streaming, api, ha, checkpoints, windows and other mechanisms.mp4 079.spark-streaming, integrated MQ-kafka development.mp4 080.spark-streaming, source code analysis, scheduling principles of streaming micro-batch tasks.mp4 081.spark-streaming.mp4 082.Introduction, principles and application scenarios of machine learning.mp4 083. Principles of linear regression algorithm and parameter optimization scheme.mp4 084. Training regression algorithm model based on Spark MLlib.mp4 085. The principle of logistic regression algorithm and the derivation of algorithm formula.mp4 086.KNN recognition of handwritten digits and KMeans clustering algorithm principle.mp4 087.KNN handwritten digit recognition and KMeans algorithm principle.mp4 088. Handwritten KMeans clustering algorithm and implementation of precise microblog marketing case.mp4 089. Analysis of KMeans precision marketing case code and application of KMeans in recommendation system.mp4 090. Logistic regression algorithm principle and formula derivation.mp4 091. Principle and formula derivation of logistic regression algorithm.mp4 092. Logistic regression algorithm and implementation of Baidu traffic prediction function.mp4 093. Baidu Maps real-time traffic conditions and traffic forecasts.mp4 094.Principle of decision tree algorithm.mp4 095. Random Forest Algorithm and Algorithm Summary.mp4 096. The Origin and Development of Recommendation Systems and Recommendation Architecture.mp4 097. Recommendation system architecture design and construction of recommendation system training set.mp4 098. Recommendation system code implementation and testing.mp4 099. Implementing online recommendation microservices for recommendation systems.mp4 100.Program-based recommendation system, architecture analysis, data migration.mp4 101. Extract program keywords and build program portraits.mp4 102. Extract keywords based on TextRank algorithm + TF-IDF algorithm.mp4 103.Building program portraits and user portraits.mp4 104.Building user portraits and performance tuning.mp4 105. Calculating program similarity based on program portraits.mp4 106.Spark tuning summary and word2vec algorithm principle.mp4 107. Calculating Similarity Based on Item Images.mp4 108. Implementing a model-based recall strategy.mp4 109. Building feature center and model recall implementation.mp4 111. Training ranking models and building recommendation system microservices.mp4 112. A summary of the recommendation system project.mp4 113.Flink initialization and cluster environment construction.mp4 114.Flink based on multiple startup methods of Yarn.mp4 115.Flink operation architecture and parallelism settings.mp4 116.Flink various operators 1.mp4 117.Flink various operators in detail 2.mp4 118.Flink various operators 3 1.mp4 118.Flink various operators 3 2.mp4 119. Basic function class and use of rich functions.mp4 120.Elasticsearch core concepts.mp4 121.ES environment installation, health value check and CRUD.mp4 122.ES environment installation, health value check and CRUD.mp4 123.Flink Checkpoint and SavePoint Detailed Explanation.mp4 124.Flink Window Analysis 1.mp4 125.Practical Exercise: ES Query Syntax.mp4 126.Flink Window Analysis 2.mp4 127.Mapping and Aggregation Query.mp4 128.Flink time semantics + Watermark.mp4 129.Flink Window Analysis 3.mp4 130. The underlying principle of ES query revealed.mp4 Big Data Lesson 1.zip Section 131 ES Query Scripting Query.mp4 Section 132 Flink Table API Programming.mp4 Section 133 ES query word segmentation detailed explanation.mp4 Section 134 Flink SQL Programming.mp4 Section 135 Flink Complex Event Processing CEP.mp4 Section 136 ES query prefix search, wildcard search, regular search, fuzzy query series.mp4 Section 137 CEP Programming and Flink Optimization.mp4 Section 138 Traffic Real-time Monitoring Project 1.mp4 Section 139 ES Java API.mp4 Section 140 Traffic Real-time Monitoring Project 2.mp4 Section 141 ES.mp4 Section 143 Traffic Real-time Monitoring Project 3.mp4 Section 144 Traffic Real-time Monitoring Project 4.mp4 Section 145 ELK Stack-ES Cluster.mp4 Section 146 ELK Stack-ES Cluster.mp4 Section 147 Traffic Real-time Monitoring Project 5.mp4 Section 148 ELK-Beats&Logstash Introduction.mp4 Section 149 ELK-Lostash Architecture Practice.mp4 Section 150 Traffic Real-time Monitoring Project 6.mp4 Section 151 ELK-Collect Nginx logs, syslog, kibana explanation.mp4 Section 152 Traffic Real-time Monitoring Project 7.mp4 Section 153 ELK-Use Packetbeat to monitor es cluster.mp4 Section 154 ES Advanced - relevance score principle and sorting algorithm optimization.mp4 Section 155 ES Advanced-Nested, Join and Term vector detailed explanation.mp4 Section 156 ES Advanced-Highlight and Suggest Search Recommendation Detailed Explanation.mp4 Section 157 ES Advanced - In-depth exploration of location-based search.mp4 Section 158 ES Advanced-Case Analysis: Epidemic Map Based on Geographic Location Search.mp4 Section 159 ES Advanced - In-depth Aggregation Analysis - Multi-metric and Histogram Analysis.mp4 Chapter 160 ES Advanced - In-depth Aggregate Search - Complete.mp4 Section 161 ES Advanced - Operation and Maintenance Cluster Management.mp4 Section 162 ES Advanced - Operation and Maintenance Cluster Management 2 and HDFS Installation.mp4 Section 163 ES Advanced-Data backup and restore based on snapshot hdfs restore.mp4 Chapter 164 ES Advanced - Index Management - 1.mp4 Chapter 165 ES Advanced - Index Management - 2.mp4 Section 166 ES Advanced - Cluster Security.mp4 Section 167 Project Practice-Search Engine Framework Principle.mp4 Section 168 Project Practice-Search Recommended Project Case.mp4 Section 169 Data Warehouse Database Paradigm and ER Entity Relationship Modeling.mp4 Section 170 Data Warehouse Dimensional Modeling and Data Warehouse Analysis Model.mp4 Section 171 Data Warehouse Data Warehouse Hierarchical Design and Naming Standards.mp4 Section 172: Project architecture, data warehouse layering and theme design of the music data warehouse platform.mp4 Chapter 173 Analysis of the Song Influence Index of Data Warehouse.mp4 Chapter 174 Analysis of the Singer Influence Index of Data Warehouse.mp4 Section 175 Sqoop full and incremental data import for data warehouse.mp4 Section 176 Azkaban Task Flow Scheduling Usage and Principles for Data Warehouse.mp4 Chapter 177: Superset BI visualization tool usage and principle for data warehouse.mp4 Section 178 Data Warehouse Machine Details ODS.EDS.DM Hierarchical Design.mp4 Section 179 Data Warehouse Machine Details Automated Scheduling and Data Visualization.mp4 Section 180 Data Warehouse User Portrait Table Model Design.mp4 Section 181 Data Warehouse User Profile Automated Scheduling and Data Visualization.mp4 Chapter 182 Data Warehouse: Gaode API Obtains Machine Reported Location.mp4 Chapter 183 Merchant and Regional Revenue Statistical Analysis of Data Warehouse.mp4 Chapter 184 Data Warehouse Revenue Analysis Automated Scheduling and Data Visualization.mp4 Section 185: Implementation of real-time user and machine log collection interface in data warehouse.mp4 Chapter 186: Flume real-time log collection implementation for data warehouse.mp4 Chapter 187 Data Warehouse: Real-time User Regional Daily Activity Analysis.mp4 Chapter 188 Cloudera Manager CDH Platform 01.mp4 Chapter 189 Cloudera Manager CDH Platform 02.mp4 Chapter 190 Cloudera Manager CDH Platform 03.mp4 Section 191 Apache Kylin Analytical Data Warehouse 01.mp4 Section 192 Apache Kylin Analytical Data Warehouse 02.mp4 Section 193 Apache Kylin Analytical Data Warehouse 03.mp4 Section 194 ClickHouse usage scenarios, features and distributed construction.mp4 Section 195 ClickHouse data type detailed explanation.mp4 Chapter 196 ClickHouse database engine classification and operation.mp4 Chapter 197 ClickHouse table engine classification and MergeTree engine detailed explanation.mp4 Section 198 ClickHouse View and SQL Syntax Operation.mp4 Section 199 Kudu distributed storage engine architecture principles and construction.mp4 Section 200 Kudu API Operations and Integration with Other Frameworks.mp4 Section 202 Spark Operation Kudu & Flink Operation Kudu.mp4 Section 203 NiFi Data Processing and Distribution System-Features, Architecture Principles and Cluster Construction.mp4 Section 204 NiFi Data Processing Distribution System-Processors Introduction and Page Operation.mp4 Section 205 NiFi Data Processing Distribution System - Real-time Synchronization of Logs, MySQL Data to Hive.mp4 Section 206 NiFi Data Processing and Distribution System - Real-time Monitoring of Log Data Writing and Consumption of Kafka.mp4 Section 207 NiFi Case Analysis.mp4 Section 208 NiFi Case Analysis 2.mp4 Section 209 Data Governance - Data Quality Management.mp4 Section 210 Data Governance - Metadata Management.mp4 Section 211 Data Governance - Data Security Management.mp4 Section 212 ETL tool Kettle-installation and basic operation.mp4 Section 213 ETL Tool Kettle-Conversion Core.Job Object.mp4 Section 214 ETL Tool Kettle-Case Analysis.mp4 Section 215 ETL Tool Kettle-Case Analysis 02.mp4 Section 216 ETL Tool Kettle-Case Analysis 03.mp4 Section 218 Data Synchronization Tool Canal&Maxwell.mp4 Chapter 219 Phoenix-Building and Basic Operations.mp4 Chapter 220 Phoenix-Secondary Index and JDBC Connection.mp4 Section 221 Real-time Data Warehouse Project - Evolution of Real-time Data Warehouse Architecture and Construction Ideas.mp4 Section 222 Real-time Data Warehouse Project-Real-time Data Warehouse Practice Sharing and Project Introduction of Major Companies.mp4 Section 223 Real-time Data Warehouse Project-Real-time Data Warehouse Project Business Data and Log Data Processing.mp4 Section 224 Real-time Data Warehouse Project-Flink Programming Processing of Real-time Data Warehouse Business Library Data.mp4 Section 225 Real-time Data Warehouse Project-Flink Programming Processing of Real-time Data Warehouse Dimension Data.mp4 Section 226 Real-time Data Warehouse Project - Real-time Data Warehouse Real-time Statistics of Songs and Singers' Popularity.mp4 Section 227 Real-time Data Warehouse Project-Flink Code DM Layer Processing and Visualization Display.mp4 Section 228 Real-time data warehouse project-Guava package conflict resolution and real-time statistics of user reported location.mp4 Section 229 Real-time Data Warehouse Project - User Real-time Login Information Visualization and Revenue Information Business Analysis.mp4 Section 230 Hourly Warehouse Project-Revenue Business Flink Code Implementation and Visualization.mp4 Section 231 Real-time Data Warehouse Project-Real-time Data Warehouse Project Summary.mp4 Section 232 Hudi table type and query type.mp4 Section 233 Hudi Integration with Spark, Hive, and Flink.mp4 Section 234 Apache Druid Real-time Analytical Database.mp4 Section 235 Project Carousel - Data Warehouse Database Paradigm and ER Entity Relationship Modeling.mp4 Section 236 Project Carousel - Dimensional Modeling of Data Warehouse and Data Warehouse Analysis Model.mp4 Section 237 Project Carousel - Data Warehouse Hierarchical Design and Naming Standards.mp4 Section 238 Project Carousel - Project Architecture and Data Warehouse Layering and Theme Design of Music Data Warehouse Platform.mp4 Section 239 Project Carousel - Song Influence Index Analysis of Data Warehouse Platform Business.mp4 Section 240 Project Carousel - Singer Influence Index Analysis of Data Warehouse Business.mp4 Section 241 Project Carousel - Azkaban Task Flow Scheduling Usage and Principles.mp4 Section 242 Project Carousel-Use and Principle of Superset BI Visualization Tool.mp4 Section 243 Project Carousel - Data Warehouse Platform Business Machine Details ODS.EDS.DM Layered Design.mp4 Section 244 Project Carousel - Data Warehouse Platform Business Machine Details Automated Scheduling and Data Visualization.mp4 Section 245 Project Carousel - User Portrait Model Design for Data Warehouse Platform Business.mp4 Section 246 Project Carousel - Data Warehouse Platform Business User Portrait Automated Scheduling and Data Visualization.mp4 Section 247 Project Carousel - Data Warehouse Platform Business - Amap API Obtains Machine Reported Location.mp4 Section 248 Project Carousel - Merchant and Regional Revenue Statistics Analysis of Data Warehouse Platform Business.mp4 Section 249 Project Carousel - Revenue Analysis Automated Scheduling and Data Visualization for Data Warehouse Platform Business.mp4 Section 250 Project Carousel - Implementation of real-time user and machine log collection interface for data warehouse platform business.mp4 |
<<: Douyin marketing plan and advertising number selection strategy
>>: How to quickly develop a marketing plan from 0 to 1
App promotion is constantly innovating, and the e...
Rural elderly people have always been the focus o...
The course schedule is as follows: ——/It Network/...
Although the best time to do Douyin was in the pa...
: : : : : : : : : : : : : : : : : : : : : : : : : ...
Due to the city lockdown in Wuhan before the Spri...
It took me three days to finish reading " Gr...
According to the data from the "2018 China O...
Some time ago, a student came to us and said that ...
The tea drinking culture has a long history in my ...
Different from algorithm-driven interest e-commer...
With the development of information technology, t...
When you have read a large number of official ema...
Based on practical experience and combined with i...
The collective rise of new consumer brands is und...