Ma Bingbing-Python Big Data Full Stack Engineering

Ma Bingbing-Python Big Data Full Stack Engineering

Ma Bingshi-Python big data full stack engineering resources introduction:

Course Catalog

001.hadoop-Big Data Enlightenment-First Look at HDFS.mp4

002.hadoop-HDFS theoretical basis reading and writing process.mp4

003.hadoop-HDFS cluster construction-pseudo-distributed mode 1.mp4

003.hadoop-HDFS cluster construction-pseudo-distributed mode 2.mp4

004.hadoop-HDFS cluster construction-HA mode concept 1.mp4

004.hadoop-HDFS cluster construction-HA mode concept 2.mp4

005.hadoop-HDFS cluster construction-HA mode verification.mp4

006.hadoop-HDFS permissions, enterprise-level construction, idea+maven development HDFS 1.mp4

006.hadoop-HDFS permissions, enterprise-level construction, idea+maven development of HDFS 2.mp4

007.hadoop-MapReduce principle detailed explanation, easy to get started.mp4

008.hadoop-Mapkeducen principle, Varn original 1.mp4

008.hadoop-Mapkeducen principle, Varn original 2.mp4

009.hadoop-MapReduce-Yar cluster construction, idea development MR wC program 1.mp4

009.hadoop-MapReduce-Yar cluster construction, idea development MR wC program 2.mp4

010.hadoop-MapReduce job submission method, source code-client submission source code 1.mp4

010.hadoop-MapReduce job submission method, source code-client submission source code 2.mp4

011.hadoop-MapReduce source code-MapTask-input source code detailed explanation.mp4

012.adoop-MapReduce source code-MapTask-output and ReduceTask 1.mp4

012.adoop-MapReduce source code-MapTask-output and ReduceTask 2.mp4

013.hadoop-MapReduce development-grouping to get TopN-AP refinement 1.mp4

013.hadoop-MapReduce development-grouping to get TopN-AP refinement 2.mp4

014.hadoop-MapReduce development recommendation system big data thinking mode.mp4

015 Hive architecture introduction and remote database mode installation 1.mp4

015 Hive architecture introduction and remote database mode installation 2.mp4

016 Hive Remote Metadata Service Mode Installation and Hive SOL 1.mp4

016 Hive Remote Metadata Service Mode Installation and Hive SOL 2.mp4

017.Hive erde, HiveServer2, Hive function 1.mp4

017.Hive erde, HiveServer2, Hive function 2.mp4

018.Hive parameter settings, operation mode, dynamic partitioning, bucketing 1.mp4

018.Hive parameter settings, operation mode, dynamic partitioning, bucketing 2.mp4

019.Hive view, index, and permission management 1.mp4

019.Hive view, index, and permission management 2.mp4

020.Hivetization, file type, HiveServer2 high availability 1.mp4

020.Hivetization, file type, HiveServer2 high availability 2.mp4

021.HBase Architecture Introduction, Data Model 1.mp4

021.HBase architecture introduction, data model 2.mp4

022.HBase pseudo-distributed and fully distributed installation, HBase basic commands 1.mp4

022.HBase pseudo-distributed and fully distributed installation, HBase basic commands 2.mp4

023.HBase Java API, Protocol Buffer Brief Introduction 1.mp4

023.HBase Java API, Protocol Buffer Brief Introduction 2.mp4

024.HBase and MapReduce integration, Hbase table design 1.mp4

024.HBase and MapReduce integration, Hbase table design 2.mp4

025.Hbase optimization and LSM tree 1.mp4

025.Hbase optimization and LSM tree 2.mp4

026.Hadoop Project-Requirement Introduction and Data Source Generation ProcessRequirement Introduction and Data Flow Diagram 1.mp4

026.Hadoop project-Requirement introduction and data source generation processRequirement introduction and data flow diagram 2.mp4

027.Hadoop project-Java and js data generation code explanation and flume brief introduction 1.mp4

027.Hadoop project-Java and js data generation code explanation and flume brief introduction 2.mp4

028.Hadoop project-Flume explanation and data cleaning module preparation 1.mp4

028.Hadoop project-Flume explanation and data cleaning module preparation 2.mp4

029.Hadoop project-data cleaning code analysis, hive and hbase integration, indicator analysis ideas 1.mp4

029.Hadoop project-data cleaning code analysis, hive and hbase integration, indicator analysis ideas 2.mp4

030.Hadoop project-hand-typed user-added indicator module code 1.mp4

030.Hadoop project-hand-typed user-added indicator module code 2.mp4

031.Hadoop project-MR output data to mysql output formatting class, sqo0p brief introduction 1.mp4

031.Hadoop project-MR output data to mysql output formatting class, sqo0p brief introduction 2.mp4

032.Hadoop Project-Hive SQL Analysis User Browsing In-depth Code Explanation and Script Writing 1.mp4

032.Hadoop Project-Hive SQL Analysis User Browsing In-depth Code Explanation and Script Writing 2.mp4

033.Introduction to redis and NIO principles 1.mp4

033.Introduction to redis and NIO principles 2.mp4

034.redis string type & bitmap 1.mp4

034.redis string type & bitmap 2.mp4

035. redis list, set, hash, sorted set, skiplist 2.mp4

035. redis list, set, hash, sorted set, skiplist 1.mp4

036.redis message subscription, pipeline, transaction, modules, Bloom filter, cache LRU 1.mp4

036.redis message subscription, pipeline, transaction, modules, Bloom filter, cache LRU 2.mp4

037. redis persistent RDB, fork, copyonwrite, AOF, RDB&AOF mixed use 1.mp4

037. redis persistent RDB, fork, copyonwrite, AOF, RDB&AOF mixed use 2.mp4

038. Redis cluster: master-slave replication, CAP, PAXOS, cluster sharding cluster 01.mp4

039. Redis cluster: master-slave replication, CAP, PAXOS, cluster sharding cluster 02.mp4

040.redis development: spring.data.redis, connection, serialization, high-low api.mp4

041. Zookeeper introduction, installation, shellcli usage, basic concept verification.mp4

042. Zookeeper principle knowledge, Paxos, Zab, role functions, API development basics.mp4

043.Zookeeper case: distributed configuration registration discovery, distributed lock, ractive mode programming.mp4

044.Scala language, functional programming, data set processing, iterator design pattern implementation.mp4

045.Scala language, process control, advanced functions.mp4

046. Scala language, collection container, iterator design pattern source code analysis.mp4

047. Scala language, match, case class, implicit, spark wordcount.mp4

048.spark-core, reviewing hadoop ecology, sorting out terminology, and analyzing hadoopRDD source code.mp4

049.spark-core, wordcount case source code analysis, diagram.mp4

050.spark-core, collection operation API, pvuv analysis, RDD source code analysis.mp4

051.spark-core, aggregate computing API, combineByKey, partition tuning.mp4

052.spark-core, secondary sorting, grouping TOpN, operator comprehensive application.mp4

053.spark-core, cluster framework diagram, role function introduction, official website learning, construction.mp4

054.spark-core, history service, standaloneHA, resource scheduling parameters.mp4

055.spark-core, yarn-based cluster construction, configuration, resource scheduling parameters, and optimization jars.mp4

056.spark-core-source code, RpcEnv, standaloneMaster startup analysis.mp4

057.spark-core-source code, Worker startup, sparksubmit submission, Driver startup.mp4

058.spark-core-source code, Application registration, Executor resource application.mp4

059.spark-core-source code, sparkContext, DAGScheduler, stage division.mp4

060.spark-core-source code, Taskscheduler, Executor running Task, SparkEnv.mp4

061.spark-core-source code, MemoryManager, BlockManager.mp4

062.spark-core-source code, Dependency, SortShuffleManager.mp4

063.spark-core-source code, SortShuffleWriter, memory buffer buffer.mp4

064.spark-core-source code, SortShuffleWriter, memory buffer buffer.mp4

065.spark-core-source code, UnsafeShufleWriter, Tungsten, Unsafe, off-heap.mp4

066.spark-core-source code, ShuffleReader, Tracker, Scheduler complete scheduling.mp4

067.spark-core-source code, RDD persistence, checkpoints, broadcast variables, accumulators.mp4

068.spark-core-source code, RDD persistence, checkpoints, broadcast variables, accumulators.mp4

069.spark-sql, SQL composition principle in big data.mp4

070.spark-sql, dataframe to dataset development.mp4

071.spark-sql, integrating hive's metastore to build enterprise-level data integration 1.mp4

072.spark-sql, integrating hive's metastore to build an enterprise-level data warehouse 2.mp4

073.spark-sql, complex sql, function, custom function, window over function, OLAP.mp4

074.spark-sql-source code, sql parsing, dataset to rdd execution plan.mp4

075.spark-sql-source code, antlr4 sql parsing, AST syntax tree logical to physical conversion.mp4

076.spark-sql-source code, logical plan, optimizer, physical plan, convert RDD.mp4

077.spark-streaming, streaming computing micro-batch computing principle and standalone.mp4

078.spark-streaming, api, ha, checkpoints, windows and other mechanisms.mp4

079.spark-streaming, integrated MQ-kafka development.mp4

080.spark-streaming, source code analysis, scheduling principles of streaming micro-batch tasks.mp4

081.spark-streaming.mp4

082.Introduction, principles and application scenarios of machine learning.mp4

083. Principles of linear regression algorithm and parameter optimization scheme.mp4

084. Training regression algorithm model based on Spark MLlib.mp4

085. The principle of logistic regression algorithm and the derivation of algorithm formula.mp4

086.KNN recognition of handwritten digits and KMeans clustering algorithm principle.mp4

087.KNN handwritten digit recognition and KMeans algorithm principle.mp4

088. Handwritten KMeans clustering algorithm and implementation of precise microblog marketing case.mp4

089. Analysis of KMeans precision marketing case code and application of KMeans in recommendation system.mp4

090. Logistic regression algorithm principle and formula derivation.mp4

091. Principle and formula derivation of logistic regression algorithm.mp4

092. Logistic regression algorithm and implementation of Baidu traffic prediction function.mp4

093. Baidu Maps real-time traffic conditions and traffic forecasts.mp4

094.Principle of decision tree algorithm.mp4

095. Random Forest Algorithm and Algorithm Summary.mp4

096. The Origin and Development of Recommendation Systems and Recommendation Architecture.mp4

097. Recommendation system architecture design and construction of recommendation system training set.mp4

098. Recommendation system code implementation and testing.mp4

099. Implementing online recommendation microservices for recommendation systems.mp4

100.Program-based recommendation system, architecture analysis, data migration.mp4

101. Extract program keywords and build program portraits.mp4

102. Extract keywords based on TextRank algorithm + TF-IDF algorithm.mp4

103.Building program portraits and user portraits.mp4

104.Building user portraits and performance tuning.mp4

105. Calculating program similarity based on program portraits.mp4

106.Spark tuning summary and word2vec algorithm principle.mp4

107. Calculating Similarity Based on Item Images.mp4

108. Implementing a model-based recall strategy.mp4

109. Building feature center and model recall implementation.mp4

111. Training ranking models and building recommendation system microservices.mp4

112. A summary of the recommendation system project.mp4

113.Flink initialization and cluster environment construction.mp4

114.Flink based on multiple startup methods of Yarn.mp4

115.Flink operation architecture and parallelism settings.mp4

116.Flink various operators 1.mp4

117.Flink various operators in detail 2.mp4

118.Flink various operators 3 1.mp4

118.Flink various operators 3 2.mp4

119. Basic function class and use of rich functions.mp4

120.Elasticsearch core concepts.mp4

121.ES environment installation, health value check and CRUD.mp4

122.ES environment installation, health value check and CRUD.mp4

123.Flink Checkpoint and SavePoint Detailed Explanation.mp4

124.Flink Window Analysis 1.mp4

125.Practical Exercise: ES Query Syntax.mp4

126.Flink Window Analysis 2.mp4

127.Mapping and Aggregation Query.mp4

128.Flink time semantics + Watermark.mp4

129.Flink Window Analysis 3.mp4

130. The underlying principle of ES query revealed.mp4

Big Data Lesson 1.zip

Section 131 ES Query Scripting Query.mp4

Section 132 Flink Table API Programming.mp4

Section 133 ES query word segmentation detailed explanation.mp4

Section 134 Flink SQL Programming.mp4

Section 135 Flink Complex Event Processing CEP.mp4

Section 136 ES query prefix search, wildcard search, regular search, fuzzy query series.mp4

Section 137 CEP Programming and Flink Optimization.mp4

Section 138 Traffic Real-time Monitoring Project 1.mp4

Section 139 ES Java API.mp4

Section 140 Traffic Real-time Monitoring Project 2.mp4

Section 141 ES.mp4

Section 143 Traffic Real-time Monitoring Project 3.mp4

Section 144 Traffic Real-time Monitoring Project 4.mp4

Section 145 ELK Stack-ES Cluster.mp4

Section 146 ELK Stack-ES Cluster.mp4

Section 147 Traffic Real-time Monitoring Project 5.mp4

Section 148 ELK-Beats&Logstash Introduction.mp4

Section 149 ELK-Lostash Architecture Practice.mp4

Section 150 Traffic Real-time Monitoring Project 6.mp4

Section 151 ELK-Collect Nginx logs, syslog, kibana explanation.mp4

Section 152 Traffic Real-time Monitoring Project 7.mp4

Section 153 ELK-Use Packetbeat to monitor es cluster.mp4

Section 154 ES Advanced - relevance score principle and sorting algorithm optimization.mp4

Section 155 ES Advanced-Nested, Join and Term vector detailed explanation.mp4

Section 156 ES Advanced-Highlight and Suggest Search Recommendation Detailed Explanation.mp4

Section 157 ES Advanced - In-depth exploration of location-based search.mp4

Section 158 ES Advanced-Case Analysis: Epidemic Map Based on Geographic Location Search.mp4

Section 159 ES Advanced - In-depth Aggregation Analysis - Multi-metric and Histogram Analysis.mp4

Chapter 160 ES Advanced - In-depth Aggregate Search - Complete.mp4

Section 161 ES Advanced - Operation and Maintenance Cluster Management.mp4

Section 162 ES Advanced - Operation and Maintenance Cluster Management 2 and HDFS Installation.mp4

Section 163 ES Advanced-Data backup and restore based on snapshot hdfs restore.mp4

Chapter 164 ES Advanced - Index Management - 1.mp4

Chapter 165 ES Advanced - Index Management - 2.mp4

Section 166 ES Advanced - Cluster Security.mp4

Section 167 Project Practice-Search Engine Framework Principle.mp4

Section 168 Project Practice-Search Recommended Project Case.mp4

Section 169 Data Warehouse Database Paradigm and ER Entity Relationship Modeling.mp4

Section 170 Data Warehouse Dimensional Modeling and Data Warehouse Analysis Model.mp4

Section 171 Data Warehouse Data Warehouse Hierarchical Design and Naming Standards.mp4

Section 172: Project architecture, data warehouse layering and theme design of the music data warehouse platform.mp4

Chapter 173 Analysis of the Song Influence Index of Data Warehouse.mp4

Chapter 174 Analysis of the Singer Influence Index of Data Warehouse.mp4

Section 175 Sqoop full and incremental data import for data warehouse.mp4

Section 176 Azkaban Task Flow Scheduling Usage and Principles for Data Warehouse.mp4

Chapter 177: Superset BI visualization tool usage and principle for data warehouse.mp4

Section 178 Data Warehouse Machine Details ODS.EDS.DM Hierarchical Design.mp4

Section 179 Data Warehouse Machine Details Automated Scheduling and Data Visualization.mp4

Section 180 Data Warehouse User Portrait Table Model Design.mp4

Section 181 Data Warehouse User Profile Automated Scheduling and Data Visualization.mp4

Chapter 182 Data Warehouse: Gaode API Obtains Machine Reported Location.mp4

Chapter 183 Merchant and Regional Revenue Statistical Analysis of Data Warehouse.mp4

Chapter 184 Data Warehouse Revenue Analysis Automated Scheduling and Data Visualization.mp4

Section 185: Implementation of real-time user and machine log collection interface in data warehouse.mp4

Chapter 186: Flume real-time log collection implementation for data warehouse.mp4

Chapter 187 Data Warehouse: Real-time User Regional Daily Activity Analysis.mp4

Chapter 188 Cloudera Manager CDH Platform 01.mp4

Chapter 189 Cloudera Manager CDH Platform 02.mp4

Chapter 190 Cloudera Manager CDH Platform 03.mp4

Section 191 Apache Kylin Analytical Data Warehouse 01.mp4

Section 192 Apache Kylin Analytical Data Warehouse 02.mp4

Section 193 Apache Kylin Analytical Data Warehouse 03.mp4

Section 194 ClickHouse usage scenarios, features and distributed construction.mp4

Section 195 ClickHouse data type detailed explanation.mp4

Chapter 196 ClickHouse database engine classification and operation.mp4

Chapter 197 ClickHouse table engine classification and MergeTree engine detailed explanation.mp4

Section 198 ClickHouse View and SQL Syntax Operation.mp4

Section 199 Kudu distributed storage engine architecture principles and construction.mp4

Section 200 Kudu API Operations and Integration with Other Frameworks.mp4

Section 202 Spark Operation Kudu & Flink Operation Kudu.mp4

Section 203 NiFi Data Processing and Distribution System-Features, Architecture Principles and Cluster Construction.mp4

Section 204 NiFi Data Processing Distribution System-Processors Introduction and Page Operation.mp4

Section 205 NiFi Data Processing Distribution System - Real-time Synchronization of Logs, MySQL Data to Hive.mp4

Section 206 NiFi Data Processing and Distribution System - Real-time Monitoring of Log Data Writing and Consumption of Kafka.mp4

Section 207 NiFi Case Analysis.mp4

Section 208 NiFi Case Analysis 2.mp4

Section 209 Data Governance - Data Quality Management.mp4

Section 210 Data Governance - Metadata Management.mp4

Section 211 Data Governance - Data Security Management.mp4

Section 212 ETL tool Kettle-installation and basic operation.mp4

Section 213 ETL Tool Kettle-Conversion Core.Job Object.mp4

Section 214 ETL Tool Kettle-Case Analysis.mp4

Section 215 ETL Tool Kettle-Case Analysis 02.mp4

Section 216 ETL Tool Kettle-Case Analysis 03.mp4

Section 218 Data Synchronization Tool Canal&Maxwell.mp4

Chapter 219 Phoenix-Building and Basic Operations.mp4

Chapter 220 Phoenix-Secondary Index and JDBC Connection.mp4

Section 221 Real-time Data Warehouse Project - Evolution of Real-time Data Warehouse Architecture and Construction Ideas.mp4

Section 222 Real-time Data Warehouse Project-Real-time Data Warehouse Practice Sharing and Project Introduction of Major Companies.mp4

Section 223 Real-time Data Warehouse Project-Real-time Data Warehouse Project Business Data and Log Data Processing.mp4

Section 224 Real-time Data Warehouse Project-Flink Programming Processing of Real-time Data Warehouse Business Library Data.mp4

Section 225 Real-time Data Warehouse Project-Flink Programming Processing of Real-time Data Warehouse Dimension Data.mp4

Section 226 Real-time Data Warehouse Project - Real-time Data Warehouse Real-time Statistics of Songs and Singers' Popularity.mp4

Section 227 Real-time Data Warehouse Project-Flink Code DM Layer Processing and Visualization Display.mp4

Section 228 Real-time data warehouse project-Guava package conflict resolution and real-time statistics of user reported location.mp4

Section 229 Real-time Data Warehouse Project - User Real-time Login Information Visualization and Revenue Information Business Analysis.mp4

Section 230 Hourly Warehouse Project-Revenue Business Flink Code Implementation and Visualization.mp4

Section 231 Real-time Data Warehouse Project-Real-time Data Warehouse Project Summary.mp4

Section 232 Hudi table type and query type.mp4

Section 233 Hudi Integration with Spark, Hive, and Flink.mp4

Section 234 Apache Druid Real-time Analytical Database.mp4

Section 235 Project Carousel - Data Warehouse Database Paradigm and ER Entity Relationship Modeling.mp4

Section 236 Project Carousel - Dimensional Modeling of Data Warehouse and Data Warehouse Analysis Model.mp4

Section 237 Project Carousel - Data Warehouse Hierarchical Design and Naming Standards.mp4

Section 238 Project Carousel - Project Architecture and Data Warehouse Layering and Theme Design of Music Data Warehouse Platform.mp4

Section 239 Project Carousel - Song Influence Index Analysis of Data Warehouse Platform Business.mp4

Section 240 Project Carousel - Singer Influence Index Analysis of Data Warehouse Business.mp4

Section 241 Project Carousel - Azkaban Task Flow Scheduling Usage and Principles.mp4

Section 242 Project Carousel-Use and Principle of Superset BI Visualization Tool.mp4

Section 243 Project Carousel - Data Warehouse Platform Business Machine Details ODS.EDS.DM Layered Design.mp4

Section 244 Project Carousel - Data Warehouse Platform Business Machine Details Automated Scheduling and Data Visualization.mp4

Section 245 Project Carousel - User Portrait Model Design for Data Warehouse Platform Business.mp4

Section 246 Project Carousel - Data Warehouse Platform Business User Portrait Automated Scheduling and Data Visualization.mp4

Section 247 Project Carousel - Data Warehouse Platform Business - Amap API Obtains Machine Reported Location.mp4

Section 248 Project Carousel - Merchant and Regional Revenue Statistics Analysis of Data Warehouse Platform Business.mp4

Section 249 Project Carousel - Revenue Analysis Automated Scheduling and Data Visualization for Data Warehouse Platform Business.mp4

Section 250 Project Carousel - Implementation of real-time user and machine log collection interface for data warehouse platform business.mp4

<<:  Douyin marketing plan and advertising number selection strategy

>>:  How to quickly develop a marketing plan from 0 to 1

Recommend

How to create a good word-of-mouth effect for your App?

App promotion is constantly innovating, and the e...

Zhao Yangang learned how to create millions of SE0 traffic in 60 days

The course schedule is as follows: ——/It Network/...

Combined with "Growth Hacker", let's talk about 18 cases of user growth

It took me three days to finish reading " Gr...

Super complete! All the advertising strategies for 2018 are here!

According to the data from the "2018 China O...

Analysis of Xiaohongshu's e-commerce "Little Oasis" platform

Different from algorithm-driven interest e-commer...

Xiaohongshu promotion strategy, big data + 3 major strategies!

With the development of information technology, t...

Talk about the key points of B-end, C-end and G-end operations

Based on practical experience and combined with i...

Eleven Trends Predicted for New Consumer Brands in 2022

The collective rise of new consumer brands is und...